Cohere
Cohere is a Canadian startup that provides natural language processing models that help companies improve human-machine interactions.
Installation and Setup
- Install the Python SDK :
pip install langchain-cohere
Get a Cohere api key and set it as an environment variable (COHERE_API_KEY
)
Cohere langchain integrations
API | description | Endpoint docs | Import | Example usage |
---|---|---|---|---|
Chat | Build chat bots | chat | from langchain_cohere import ChatCohere | cohere.ipynb |
LLM | Generate text | generate | from langchain_cohere.llms import Cohere | cohere.ipynb |
RAG Retriever | Connect to external data sources | chat + rag | from langchain.retrievers import CohereRagRetriever | cohere.ipynb |
Text Embedding | Embed strings to vectors | embed | from langchain_cohere import CohereEmbeddings | cohere.ipynb |
Rerank Retriever | Rank strings based on relevance | rerank | from langchain.retrievers.document_compressors import CohereRerank | cohere.ipynb |
Quick copy examples
Chat
from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage
chat = ChatCohere()
messages = [HumanMessage(content="knock knock")]
print(chat.invoke(messages))
API Reference:HumanMessage
Usage of the Cohere chat model
LLM
from langchain_cohere.llms import Cohere
llm = Cohere()
print(llm.invoke("Come up with a pet name"))
Usage of the Cohere (legacy) LLM model
Tool calling
from langchain_cohere import ChatCohere
from langchain_core.messages import (
HumanMessage,
ToolMessage,
)
from langchain_core.tools import tool
@tool
def magic_function(number: int) -> int:
"""Applies a magic operation to an integer
Args:
number: Number to have magic operation performed on
"""
return number + 10
def invoke_tools(tool_calls, messages):
for tool_call in tool_calls:
selected_tool = {"magic_function":magic_function}[
tool_call["name"].lower()
]
tool_output = selected_tool.invoke(tool_call["args"])
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
return messages
tools = [magic_function]
llm = ChatCohere()
llm_with_tools = llm.bind_tools(tools=tools)
messages = [
HumanMessage(
content="What is the value of magic_function(2)?"
)
]
res = llm_with_tools.invoke(messages)
while res.tool_calls:
messages.append(res)
messages = invoke_tools(res.tool_calls, messages)
res = llm_with_tools.invoke(messages)
print(res.content)
API Reference:HumanMessage | ToolMessage
Tool calling with Cohere LLM can be done by binding the necessary tools to the llm as seen above. An alternative, is to support multi hop tool calling with the ReAct agent as seen below.
ReAct Agent
The agent is based on the paper ReAct: Synergizing Reasoning and Acting in Language Models.
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_cohere import ChatCohere, create_cohere_react_agent
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents import AgentExecutor
llm = ChatCohere()
internet_search = TavilySearchResults(max_results=4)
internet_search.name = "internet_search"
internet_search.description = "Route a user query to the internet"
prompt = ChatPromptTemplate.from_template("{input}")
agent = create_cohere_react_agent(
llm,
[internet_search],
prompt
)
agent_executor = AgentExecutor(agent=agent, tools=[internet_search], verbose=True)
agent_executor.invoke({
"input": "In what year was the company that was founded as Sound of Music added to the S&P 500?",
})
The ReAct agent can be used to call multiple tools in sequence.
RAG Retriever
from langchain_cohere import ChatCohere
from langchain.retrievers import CohereRagRetriever
from langchain_core.documents import Document
rag = CohereRagRetriever(llm=ChatCohere())
print(rag.invoke("What is cohere ai?"))
API Reference:Document
Usage of the Cohere RAG Retriever
Text Embedding
from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(model="embed-english-light-v3.0")
print(embeddings.embed_documents(["This is a test document."]))
Usage of the Cohere Text Embeddings model
Reranker
Usage of the Cohere Reranker