CerebriumAI
Cerebrium
is an AWS Sagemaker alternative. It also provides API access to several LLM models.
This notebook goes over how to use Langchain with CerebriumAI.
Install cerebrium
The cerebrium
package is required to use the CerebriumAI
API. Install cerebrium
using pip3 install cerebrium
.
# Install the package
!pip3 install cerebrium
Imports
import os
from langchain.chains import LLMChain
from langchain_community.llms import CerebriumAI
from langchain_core.prompts import PromptTemplate
API Reference:CerebriumAI
Set the Environment API Key
Make sure to get your API key from CerebriumAI. See here. You are given a 1 hour free of serverless GPU compute to test different models.
os.environ["CEREBRIUMAI_API_KEY"] = "YOUR_KEY_HERE"
Create the CerebriumAI instance
You can specify different parameters such as the model endpoint url, max length, temperature, etc. You must provide an endpoint url.
llm = CerebriumAI(endpoint_url="YOUR ENDPOINT URL HERE")
Create a Prompt Template
We will create a prompt template for Question and Answer.
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
Initiate the LLMChain
llm_chain = LLMChain(prompt=prompt, llm=llm)
Run the LLMChain
Provide a question and run the LLMChain.
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.run(question)
Related
- LLM conceptual guide
- LLM how-to guides